Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1655, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409234

RESUMEN

Recent advances in surface-patterning techniques of liquid crystals have enabled the precise creation of topological defects, which promise a variety of emergent applications. However, the manipulation and application of these defects remain limited. Here, we harness the moiré effect to engineer topological defects in patterned nematic liquid crystal cells. Specifically, we combine simulation and experiment to examine a nematic cell confined between two substrates of periodic surface anchoring patterns; by rotating one surface against the other, we observe a rich variety of highly tunable, novel topological defects. These defects are shown to guide the three-dimensional self-assembly of colloids, which can conversely impact defects by preventing the self-annihilation of loop-defects through jamming. Finally, we demonstrate that certain nematic moiré cells can engender arbitrary shapes represented by defect regions. As such, the proposed simple twist method enables the design and tuning of mesoscopic structures in liquid crystals, facilitating applications including defect-directed self-assembly, material transport, micro-reactors, photonic devices, and anti-counterfeiting materials.

2.
Proc Natl Acad Sci U S A ; 120(16): e2221718120, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040402

RESUMEN

Nanomotors in nature have inspired scientists to design synthetic molecular motors to drive the motion of microscale objects by cooperative action. Light-driven molecular motors have been synthesized, but using their cooperative reorganization to control the collective transport of colloids and to realize the reconfiguration of colloidal assembly remains a challenge. In this work, topological vortices are imprinted in the monolayers of azobenzene molecules which further interface with nematic liquid crystals (LCs). The light-driven cooperative reorientations of the azobenzene molecules induce the collective motion of LC molecules and thus the spatiotemporal evolutions of the nematic disclination networks which are defined by the controlled patterns of vortices. Continuum simulations provide physical insight into the morphology change of the disclination networks. When microcolloids are dispersed in the LC medium, the colloidal assembly is not only transported and reconfigured by the collective change of the disclination lines but also controlled by the elastic energy landscape defined by the predesigned orientational patterns. The collective transport and reconfiguration of colloidal assemblies can also be programmed by manipulating the irradiated polarization. This work opens opportunities to design programmable colloidal machines and smart composite materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...